EcoNexus

info@econexus.info www.econexus.info

October 2023

Current and proposed insect targets for gene drive development

A horizon scanning survey

Mark Wells, PhD and Ricarda A. Steinbrecher, PhD m.wells@econexus.info & r.steinbrecher@econexus.info

Summary of findings

- Gene drives are under development or have been proposed for 41 insect targets from six different orders. This has increased by nine since our previous survey in April 2022.
- While 15 of the proposed targets are vectors of human disease,³ in particular malaria, the majority are agricultural pests,⁴ 22 in total. These include five livestock pests or livestock disease vectors, which partially overlap with human disease vectors.
- There is substantial effort going towards developing gene drives in the mosquito genera *Aedes* and *Culex*, which are not vectors of malaria.
- The crop pests 'spotted winged drosophila' (*Drosophila suzukii*) and the 'diamondback moth' (*Plutella xylostella*) are also the focus of substantial gene drive development efforts.
- Only five species are proposed as targets because of wider biodiversity impacts or combined economic loss and biodiversity impacts,⁵ as well as one for forest management purposes and one for conservation, the latter again overlapping with human disease vectors.⁶
- The majority of gene drive proposals are based on eradication/suppression approaches. Only a very few are projects that are aiming to modify characteristics of insects in the wild.
- At the present time no projects are close to producing a usable and proven 'product'. But some are closer to potential field trials, pending on regulation, risk assessment and further (technical) developments.
- CRISPR-based homing gene drives have been shown to function with reasonable efficiency in several members of the order *Diptera* (true flies), especially within the mosquito genera *Anopheles* and *Aedes*, and within the genus *Drosophila*. However it is notable that within another member of the *Diptera*, the mosquito *Culex quinquefasciatus*, a homing gene drive so far operates only at very low efficiency.
- It remains unclear how applicable homing CRISPR/Cas gene drives will be in insects outside of the *Diptera*. In non-dipteran insects there is only one example of a such a gene drive showing any level of functionality: a very low efficiency system constructed in the diamondback moth (*Plutella xylostella*).

Contextualisation

The emergence of gene drive technology opens-up unprecedented prospects of modifying, suppressing, or even eliminating wild species to serve human purposes. The consequences of choosing to go down this path are very difficult to foresee, especially in the longer term. To help frame further discussion on this topic, we have updated our survey of gene drive development in insects, screening the scientific literature up until September 2023. The survey also includes development of so-called 'x-shredders', a sex ratio distortion system with close similarities to gene drive technology.

We do not cover issues regarding risks, difficulties in performing robust risk assessments, or the lack of proven methods to confine, halt or reverse engineered gene drives.

Our survey gives an overview of:

- What research has taken place or is ongoing.
- Which species and taxa are current or proposed targets for gene drive development, and which types of gene drives are being put forward.
- How far along developments have progressed and what the next stages of experimentation might be.

Summary of proposed insect targets

	Taxonomic Group	Taxonomic level	Common name	Number of proposed targets
*	CULICIDAE	family	mosquitoes	12
*	DIPTERA	order	flies - here excluding mosquitoes	11
* *	LEPIDOPTERA	order	moths, butterflies and skippers	2
*	HEMIPTERA	order	true bugs	5
(*)	COLEOPTERA	order	beetles and weevils	5
***	HYMENOPTERA	order	sawflies, bees, wasps and ants	5
*	THYSANOPTERA	order	thrips	1
	total			41

Methodology

Please see end of document.

¹ The vast majority of the targets identified in the literature are single species or species complexes, however some early stage proposals relate to broader taxonomic groups, namely the *Glossina* genus (Testse flies - row 23), the *Scolytinae* subfamily (Bark beetles - row 32) and the order *Thysanoptera* (Thrips - row 41).

² Many experimental gene drive systems are being developed and tested in the model organism *Drosophila melanogaster*. Because we are not aware of any plans to target this organism in the wild, a survey of work in this species is not included here.

³ All 12 mosquito species listed in rows 1.1-12, the flies in rows 22 and 23, and the bug Rhodnius prolixus in rows 28.1-28.2.

⁴ Targets impacting crops are detailed in rows 13-16, 19, 24-27, 29-31, 33-35, 38, 41; targets impacting livestock are listed in rows 17, 18, 20, 21 and 23.

⁵ Targets impacting wider biodiversity (and economics) are detailed in rows 36-41.

Proposed targets for forestry are bark beetles in row 32, and for conservation is the mosquito *Culex quinquefasciatus* in row 12, a vector for bird malaria as well as for human and animal diseases.

	Species	Intended use	Type of gene drive (our categories)	Publications (where research				is st enta						Project leader (corresponding	Funders
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system	is described)		the v			TOR	Just	•			author on publications) Institution	runders
	CULICIDAE (mosq	uitoes)													
1.1	Anopheles gambiae African malaria mosquito Sub-Saharan Africa (Sinka et al 2012)	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa) Population suppression	Autosomal sex distorter -'X-shredder' (I-Ppol based) 1 Synthetic sex ratio distortion system	 i. Galizi et al. 2014, ii. Facchinelli et al. 2019, iii. Bernardini et al. 2019 	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK + M.Q. Benedict CDC, USA	Gates Foundation (via NIH); European Research Council
1.2			Homing CRISPR Gene drive targeting doublesex (dsx gene) or dsxF CRISPR gene drive	 i. Kyrou et al. 2018 ii. Hammond, Pollegioni, et al. 2021 iii. Garrood et al. 2021, Taxiarchi et al. 2021 	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation Open Philanthropy DARPA BBSRC
1.3			Autosomal sex distorter - 'X-shredder' (CRISPR based) CRISPR-Cas9 sex ratio distortion system	Galizi et al. 2016	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation (via NIH)
1.4			Homing CRISPR + Sex Distorter (X-shredder) (male-biased) Sex- distorter gene drive (SDGD)	i. Simoni et al. 2020 ii. Garrood et al. 2021	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation

Engineered sex ratio distorter systems that are NOT gene drives

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to e		rime	is st enta						Project leader (corresponding author on publications) Institution	Funders
1.5	Anopheles gambiae African malaria mosquito	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Homing CRISPR	 i. Hammond et al. 2015, ii. Hammond et al. 2017 iii. Garrood et al. 2021 iv. Pescod et al. 2023² 	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation (via NIH); European Research Council
	Sub-Saharan Africa (Sinka et al 2012)	Population suppression	CRISPR-Cas9 gene drive system targeting female reproduction	2023											
1.6			Homing CRISPR CRISPR-Cas9 gene drive system targeting female reproduction	 i. Hammond, Karlsson, et al. 2021 ii. Garrood et al. 2021 iii. Taxiarchi et al. 2021 iv. Pescod et al. 2023² 	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation
1.7		Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Homing CRISPR	 i. Carballar-Lejarazú et al. 2020 ii. Carballar-Lejarazú et al. 2022 iii. Terradas et al. 2022 iv. Carballar-Lejarazú 	1	2	3	4	5	6	7	8	9	A. James UC Irvine, USA	Gates Foundation; UC Irvine
		Population modification	'Cas9/guide RNA (gRNA)-based gene- drive systems' 'autonomous gene- drive system'	et al 2023											
1.8		Population modification (to stop pathogen development within mosquito)	Split homing CRISPR variant (targeting CP, AP-2, and Aper-1) Integral gene drive (IGD)	Hoermann et al. 2021	1	2	3	4	5	6	7	8	9	N. Windbichler Imperial College London, UK	Gates Foundation

² Pescod et al (2023) carried out further work to characterise the performance of these systems in different strains of *An. gambiae* at the Liverpool School of Tropical Medicine.

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w cle expe the w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
1.9	Anpoheles gambiae	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Split homing CRISPR variants (targeting Gam1 and CP)	Hoermann et al. 2022	1	2	3	4	5	6	7	8	9	N. Windbichler Imperial College London, UK	Gates Wellcome Trust
		Population modification (to stop pathogen development within mosquito)	Integral gene drive (IGD)												
1.10		Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Homing CRISPR variant	Ellis et al. 2022	1	2	3	4	5	6	7	8	9	N. Windbichler Imperial College London, UK	Gates Foundation
		Population modification	Describe a 'CRISPR/ Cas9 integral gene drive allele'												
2	Anopheles arabiensis	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Autosomal sex distorter -'X-shredder'1	Bernardini et al. 2019	1	2	3	4	5	6	7	8	9	A. Crisanti Imperial College London, UK	Gates Foundation
	Sub-Saharan Africa and a small part of Arabian peninsula - see map (Sinka et al 2012)	Population suppression	Synthetic sex ratio distortion system												

¹ Engineered sex ratio distorter systems that are NOT gene drives

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to		rime	enta		/systease				Project leader (corresponding author on publications) Institution	Funders
3.1	Anopheles coluzzii	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Autosomal sex distorter -'X-shredder' (I-Ppol based) 'synthetic sex ratio distortion transgene'	Pollegioni et al, 2023	1	2	3	4	5	6	7	8	9	P. Pollegioni National Research Council, Terni, Italy [A Crisanti - also an author now at University of Padova, Italy]	Gates Open Philanthropy
3.2		Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	'Cas9/guide RNA (gRNA)-based gene- drive systems' 'autonomous gene- drive system'	Carballar-Lejarazú et al, 2023	1	2	3	4	5	6	7	8	9	A. A. James UC Irvine, USA	Gates UC, Irvine
4.1	Anopheles stephensi Asian malaria mosquito Indian subcontinent and parts of middle east - see map (Sinka et al 2012)	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in India and surrounding regions) Population modification to 'interrupt parasite transmission'	Cas9 mediated gene drive system for population modification	i. Gantz et al. 2015 ii. Pham et al. 2019	1	2	3	4	5	6	7	8	9	E. Bier & A. James UC San Diego, USA UC Irvine, USA	NIH; Sarah Sandell and Michael Marshall; W. M. Keck Foundation; TATA Institute; Gates Foundation; UC Irvine

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w clo expe :he w	rime	enta						Project leader (corresponding author on publications) Institution	Funders
4.2		Reduction of transmission of malaria pathogen by this vector	Homing CRISPR	i. Adolfi et al. 2020ii. Terradas et al. 2022	1	2	3	4	5	6	7	8	9	A. James UC Irvine, USA	NIH; TATA Institute;
		Population modification – proof of principle	HDR based autonomous gene drive rescue system (HDR = homology directed repair)												UC Irvine; DARPA
5.1	Anopheles funestus Predicted distribution	Reduction of transmission of malaria pathogen by this vector (to reduce morbidity and mortality from malaria in Sub-Saharan Africa)	Unspecified – probably would be derived from systems developed by Gates Foundation in <i>An. gambiae</i>	Ogola et al. 2019	1	2	3	4	5	6	7	8	9	D.P. Tchousassi International Centre of Insect Physiology and Ecology, Kenya	Gates Foundation (via NIH) DFiD Sida SDC
	(Sinka et al 2012)	Unspecified	NA – preliminary study only												Kenyan Govt
5.2		Morbidity and mortality from malaria in sub- Saharan Africa	Probably homing CRISPR – cites these drives as showing 'the most promise'	Quinn et al. 2021	1	2	3	4	5	6	7	8	9	T. Nolan Liverpool School of Tropical Medicine, UK	BBSRC
		Not specified but does talk about 'control' of this vector	NA – preliminary study only												
6	Anopheles albimanus	Reduction of transmission of pathogens (including malaria and lymphatic filariasis) by these vectors in North America	Probably homing CRISPR	Henderson et al. 2022	1	2	3	4	5	6	7	8	9	J.L. Rasgon Pennsylvania State University, USA	NIH USDA Pennsylvania Department of Health
		Use of the term 'vector control' in abstract implies population suppression	'gene drives utilizing CRISPR-cas9' -likely indicating homing CRISPR												Dorothy Foehr Huck and J. Lloyd Huck NSF
7	Anopheles crucians				1	2	3	4	5	6	7	8	9		
8	Anopheles freeborni				1	2	3	4	5	6	7	8	9		
9	Anopheles quadrimaculatus				1	2	3	4	5	6	7	8	9		

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w cle expe he w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
10.1	Aedes aegypti Yellow fever mosquito	Reduction of transmission of arboviruses (e.g. yellow fever, chikungunya, dengue, and Zika)	Split homing CRISPR gene drive	i. Li, Yang, et al. 2020 ii. Buchman et al. 2019 iii. Buchman et al.	1	2	3	4	5	6	7	8	9	O. Akbari UC San Diego, USA + L. Alphey	DARPA; UC Davis; US Centers for Disease Control
	'predicted to occur primarily in the tropics and sub-tropics, with concentrations in northern Brazil and southeast Asia including all of India'(Kraemer et al. 2015)	Population modification	CRISPR based split gene drive (Verkuijl et al (2022) conclude that in some cases the mechanism may be meiotic drive rather than homing drive)	iv. Verkuijl et al. 2022										Pirbright Institute, UK	and Prevention BBSRC NIH
10.2		Reduction in transmission of arboviruses (e.g. yellow fever, chikungunya, dengue, and Zika) by this vector.	Homing CRISPR	Reid et al. 2022	1	2	3	4	5	6	7	8	9	A. W. E. Franz University of Missouri, USA	NIH
		Population modification/ replacement	Single locus autonomous CRISPR/ Cas9 gene drive												
10.3		Presumably to reduce impacts on human health from Yellow fever and dengue transmission by this vector species, however the authors do not make this explicit	Split homing CRISPR	Anderson et al, 2023	1	2	3	4	5	6	7	8	9	L Alphey Pirbright Institute, UK	DARPA Wellcome Trust BBSRC
		NA - Technology development	'Split drive' / 'Split homing-drive'												
10.4		Reduction of disease- transmission by this vector species	Homing CRISPR	Chae et al, 2023	1	2	3	4	5	6	7	8	9	Z. N. Adelman Texas A&M University, USA	NIH-NIAID TexasA&M USDA
		Population suppression	'homing-based gene drive' - preliminary research												OSDA

	Species	Intended use	Type of gene drive (our categories)	Publications (where research		w clo								Project leader (corresponding	Funders
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system	is described)		the w			1010	asc.	3			author on publications) Institution	Tunders
11.1	Aedes albopictus	Reduction in transmission of arboviruses (e.g. yellow fever, chikungunya, dengue, and Zika) by this vector. Population suppression	Homing CRISPR CRISPR/Cas9 gene-	Zhao et al. 2022	1	2	3	4	5	6	7	8	9	X-G Chen Southern Medical University, China A James University of California Irvine, USA	National Natural Science Foundation of China National Key Research and Development Program of Chir
			drive system												NIH
12.1	Culex quinquefasciatus Southern house mosquito	Reduction of transmission of vector borne diseases in humans, mammals and birds (e.g. avian malaria)	Split homing CRISPR	i. Harvey-Samuel et al. 2023 (Not yet peer reviewed)ii. Feng et al. 2021iii. Anderson et al.	1	2	3	4	5	6	7	8	9	L. Alphey Pirbright Institute, UK [+ K. Esvelt MIT, USA	DARPA; BBSRC; Welcome Trust UCSD
	(Samy et al 2016)	Proof of principle	'Split-gene-drive'	2020 iv. Anderson et al. 2019 v. DARPA 2017										On DARPA grant award]	NIH TATA
12.2			Unspecified - CRISPR based	Li, Li, et al. 2020	1	2	3	4	5	6	7	8	9	O. Akbari UC San Diego, USA	In part: UC San Diego Start Up
			NA – preliminary study only											oo can biogo, con	Funds

	Species	Intended use	Type of gene drive (our categories)	Publications				is st						Project leader (corresponding	
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system	(where research is described)		<i>expe</i> the v		entai ?	rele	ease	s			author on publications) Institution	Funders
	DIPTERA (flies)														
13.1	Drosophila suzukii ⁸ Spotted wing drosophila (SWD)	Reduction of damage to soft fruit crops (e.g. cherries) caused by this species	MEDEA	Buchman et al. 2018	1	2	3	4	5	6	7	8	9	O. Akbari UC San Diego, USA	California Cherry Board
	Bangladesh, Korea, Thailand. Spread into: Japan, Brazil, Argentine, Chile, Mexico, United States (esp. California), Canada, and Europe (esp. France)	Here providing proof of concept for MEDEA in <i>D. suzukii</i> for population suppression/ replacement	Synthetic <i>Medea</i> gene drive system												
	(Polo et al. 2016) (EPPO 2022)														
13.2	Drosophila suzukii	Reduction of damage to soft fruit crops (e.g. cherries) caused by this species	Split homing CRISPR 'CRISPR/Cas9-based	Yadav et al, 2023	1	2	3	4	5	6	7	8	9	M. J. Scott North Carolina State University, USA	NIH (full list of funders to follow in final version)
		Special Copperation	split homing gene drive targeting doublesex'												
13.3		Reduction of damage to soft fruit crops (e.g. cherries) caused by this species	Propose homing CRISPR	Ni et al. 2021	1	2	3	4	5	6	7	8	9	J. Huang Zhejiang University, China	Zhejiang Provincial Fund for Distinguished Young Scholars Fundamental
		Population suppression	NA – preliminary study only												Research Funds for the Zhejiang Provincial Universities

Wolf et al (2023) published an experimental study investigating the potential for *D. suzukii* to hybridise with closely related species. The aim was to establish strategies for assessing the risk of gene drive elements impacting non-target species via hybridisation.

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w clo expe the w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
13.4	Drosophila suzukii Spotted winged drosophila	Reduction of economic costs caused by consumption of fruit crops by this species.	NA - Stakeholder engagement study	Kokotovich et al. 2022	1	2	3	4	5	6	7	8	9	A.E. Kokotovich North Carolina State University, USA	USDA (full list of funders to follow in final version)
		Population suppression	NA- Stakeholder engagement study												
14.1	Ceratitis capitata Mediterranean fruit fly (medfly)	Reduction of damage to fruit crops caused by this species	Autosomal sex distorter - 'X-shredder'	Meccariello et al. 2021	1	2	3	4	5	6	7	8	9	N. Windbichler Imperial College London, UK	BBSRC BARD
	Africa, Mediterranean area Australasia, North and South America (FAO/IAEA 2017)	Population suppression	CRISPR based sex distortion												
14.2			Homing CRISPR gene drive Cas9 based sex conversion suppression gene drive (note no constructs yet tested in <i>C. capitata</i>)	KaramiNejadRanjbar et al. 2018	1	2	3	4	5	6	7	8	9	E. Wimmer University of Gottingen, Germany	DAAD Excellence Foundation for the Promotion of the Max Planck Society IGI UC Berkeley DARPA
14.3			Preliminary study only, but development of CRISPR methods in this species points towards CRISPR based gene drive design NA – preliminary study only	Sim et al. 2019	1	2	3	4	5	6	7	8	9	S.M. Geib Daniel K. Inouye US Pacific Basin Agricultural Research Center, USA	USDA
15	Anastrepha ludens Mexican fruit fly	Reduction of damage to fruit crops caused by this species	Preliminary study only, but development of CRISPR methods in this species points towards CRISPR based gene drive design	Sim et al. 2019	1	2	3	4	5	6	7	8	9	S.M. Geib Daniel K. Inouye US Pacific Basin Agricultural Research Center, USA	USDA
	Mexico, Central America and parts of US (CABI 2022)	Population suppression	NA – preliminary study only												

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w clo expe he w	rime	ntal						Project leader (corresponding author on publications) Institution	Funders
16.1	Bactrocera dorsalis Oriental fruit fly	Reduction of damage to vegetable, fruit and nut crops caused by this species	Preliminary study only, but development of CRISPR methods in this species points towards CRISPR based gene drive design	Sim et al. 2019	1	2	3	4	5	6	7	8	9	S.M. Geib Daniel K. Inouye US Pacific Basin Agricultural Research Center, USA	USDA
	(CABI 2022)	Population suppression	NA – preliminary study only												
16.2			Some form of CRISPR based gene drive NA – preliminary study only	Zhao et al. 2019	1	2	3	4	5	6	7	8	9	R. Yan Hainan University, China	
17	Cochliomyia hominivorax New world screwworm	Reduction of disease and death of livestock caused by this species in South America and Caribbean	Propose homing CRISPR	i. Scott et al. 2020 ii. Paulo et al. 2019 iii. Novas et al. 2023	1	2	3	4	5	6	7	8	9	M.J. Scott North Carolina State University, USA	NCSU FAPESP USDA-ARS COPEG
	(CABI 2022)	Population suppression	'autonomous CRISPR/ Cas9-based homing gene drive'												STRI Institut Pasteur de Montevideo IADB INIA
18	Lucilla cuprina Australian sheep blowfly	Reduction of disease and death of livestock caused by this species in Australia and New Zealand	Probably homing CRISPR (in line with proposals for <i>C.</i> hominivorax)	Paulo et al. 2019	1	2	3	4	5	6	7	8	9	M.J. Scott North Carolina State University, USA	FAPESP USDA-ARS COPEG STRI
	Throughout the world (needs warmer weather conditions)	Population suppression	NA – preliminary study only												

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w cle expe the w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
19	Bactrocera oleae Olive fruit fly	Reduction of harm to olive harvests caused by this species	Homing CRISPR	Koidou et al. 2020	1	2	3	4	5	6	7	8	9	J. Vontas Foundation for Research & Technology, Hellas, Greece	
	(CABI 2022)	Population suppression	NA – preliminary study only												
20	Lucilla sericata Green bottle fly	Reduction of disease and death of livestock caused by this species	Propose Homing CRISPR	Davis et al. 2021	1	2	3	4	5	6	7	8	9	M.J. Scott North Carolina State University, USA	DARPA
	Throughout the world	Population suppression	NA – preliminary study only												
21	Wohlfahrtia magnifica Spotted flesh fly (or screw worm fly)	To reduce impacts on livestock health from myiasis caused by this parasitic fly species.	Homing CRISPR	Jia et al, 2023	1	2	3	4	5	6	7	8	9	P. A. Burger University of Veterinary Medicine Vienna, Austria	Chinese Scholarship Council (CSC) National
		Population suppression	Cas9-based homing gene drive system												Natural Science Foundation of China Austrian Science Funds (FWF)
22	Lutzomyia longipalpis species complex Sand Fly	Reduction in transmission of Leishmania infantum by this vector (to reduce occurrence of visceral leishmaniasis disease)	Propose homing CRISPR	Wellcome 2017	1	2	3	4	5	6	7	8	9	M. Yeo London School of Hygiene and Tropical Medicine, UK	Wellcome
	Primarily central and South America (Sosa- Estani and Leonor Segura 2015)	Population modification	NA – preliminary study only												

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	ow cl expe the v	erim	enta	train d rel	/sys	tem es			Project leader (corresponding author on publications) Institution	Funders
23	Glossina genus Tsetse flies	Reduction in transmission of trypanosome parasites by this vector (to reduce occurrence of sleeping sicknessin humans and livestock, esp. European cattle breeds.)	NA – proposal only	Bier 2022	1	2	3	4	5	6	7	8	9	E. Bier UC San Diego, USA	NIH; Allan Frontiers Group Gates Foundation; TATA trusts
	(FAO in Kariithi et al. 2013)	Not stated – proposal only	NA – proposal only												
	LEPIDOPTERA (mo	oths, butterflies and s	skippers)	3											
24.1	Plutella xylostella Diamond back moth	Demonstration of a functional homing CRISPR gene drive system in this species, to allow development of systems for 'genetic control of globally-distributed pest <i>P. xylostella</i>	Homing CRISPR	Asad et al. 2022	1	2	3	4	5	6	7	8	9	G. Yuang Fujian Agriculture and Forestry University, China	National Natural Science Foundation of China Special Key Project of Fujian Province "111" program
		Proof of principal for either population modification or suppression (ultimate aim appears to be population suppression)	CRISPR/Cas9-based gene drive (CCGD)												

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	expe	ose <i>rime</i> vild?	enta	train I relo	/sys	stem es			Project leader (corresponding author on publications) Institution	Funders
24.2	Plutella xylostella Diamond back moth	Reduction of damage to cruciferous crops by this species	Split homing CRISPR	Xu et al. 2022	1	2	3	4	5	6	7	8	9	M.S. You Fujian Agriculture and Forestry University,	BBSRC EU
	Top – year round range Bottom – seasonal range (Zalucki et al. 2012)	Not stated	CRISPR-Cas9 based gene drive in the diamondback moth											China + L. Alphey Pirbright Institute, UK	Chinese government
24.3		Reduction of damage to cruciferous crops by this species	Drive type not specified in detail	Harvey-Samuel et al. 2019	1	2	3	4	5	6	7	8	9	L. Alphey Pirbright Institute, UK	EU BBSRC
		Population suppression	Proposed system is termed 'RIDL-with- Drive' (RIDL - Release of Insects carrying Dominant Lethal)												
24.4		Reduction of damage to cruciferous crops by this species	Not specified but study uses CRISPR- Cas9 gene knockout methodology, so homing CRISPR seems likely		1	2	3	4	5	6	7	8	9	M.S. You Fujian Agriculture and Forestry University, China	National Natural Science Foundation of China, National Natural Science Foundation of Fujian Province,
		Population suppression	NA preliminary study												Major Project of Fujian Province
25	Plodia interpunctella Indian meal moth	Reduction of damage to dry food stores (e.g. cereals) caused by this species	NA – proposal only	Goldsmith et al. 2022	1	2	3	4	5	6	7	8	9	C. Goldsmith Texas A&M University, USA	USDA
	Present on all continents except Antarctica (CABI 2022)	Not stated – proposal only	NA – proposal only												

		,		1											
	Species	Intended use	Type of gene drive (our categories)	Publications (where research				is str ental						Project leader (corresponding author on publications)	Funders
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system	is described)	in t	he v	vild?							Institution	- unuoio
	HEMIPTERA (true b	ougs)													
26.1	Diaphorina citri Asian citrus psyllid	Reduction in transmission of citrus greening disease, and resulting harm to citrus fruit. This species acts as a vector for <i>Candidatus Liberibacter</i> spp. bacteria which cause the disease.	Not stated – no details of design published	Described by Jones et al. 2019 and Turpen 2017 (Report to USDA)	1	2	3	4	х	х	x	х	х	T. Turpen Citrus Research and Development Foundation, Florida, USA	USDA
	Central and South America, India, South East Asia and Saudi Arabia (Grafton-Cardwell et al. 2005)	Population replacement or modification	Not stated – no details of design published												
26.2		As above	Propose homing CRISPR	Wheatley and Yang 2021	1	2	3	4	5	6	7	8	9	Y. Yang Pennsylvania State	USDA Hatch
		Population modification or suppression proposed	NA – proposal only											University, USA	appropriations
27	Lygus hesperus Western tarnished plant bug	Reduction in damage to cotton and other crops caused by this species	Probably CRISPR based – various forms of CRISPR drive cited	Heu et al. 2022	1	2	3	4	5	6	7	8	9	J. Fabrick U.S. Arid Land Agricultural Research Center, USA	Cotton Incorporated
	Mainly western US, also reported in US state of Georgia (CABI 2022)	Population suppression	NA – preliminary study											Center, OSA	
28.1	Rhodnius prolixus Kissing bug	Reduction in transmission of the parasite <i>Trypanosoma</i> <i>cruzi</i> by this vector (to reduce occurrence of Chagas disease)	Propose homing CRISPR	Wellcome 2017	1	2	3	4	5	6	7	8	9	M. Yeo London School of Hygiene and Tropical Medicine, UK	Wellcome
	Venezuala, Columbia and parts of Central America (Sosa-Estani and Leonor Segura 2015)	Population modification	NA – no research published yet												

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to e	w clo expei he w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
28.2		Reduction in transmission of the parasite <i>Trypanosoma cruzi</i> by this vector (to reduce occurrence of Chagas disease)	Probably homing CRISPR	Berni et al. 2020	1	2	3	4	5	6	7	8	9	H. Araujo Federal University of Rio de Janeiro, Brazil	Not stated
		Population modification or suppression	NA – unpublished preliminary study only												
29	Bemisia tabaci species complex Silverleaf whitefly	Reduction of damage to crops caused by transmission of begomoviruses by this vector species	Homing CRISPR	Li, Aidlin Harari, et al. 2020	1	2	3	4	5	6	7	8	9	B.E. Tabashnik University of Arizona, USA	United States — Israel Binational Agricultural Research and Development Fund
	(Kriticos et al. 2020)	Population modification	NA – preliminary theoretical study												
29.2	Bemisia tabaci	Reduction of damage to crops via feeding or transmission of viruses (especially begomoviruses)	Probably homing CRISPR	Mahmood et al. 2022	1	2	3	4	5	6	7	8	9	S Mansoor College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Pakistan	Full list of funders to follow in final version
		Population modification/ replacement OR Population suppression/ eradication	'CRISPR based gene drive'											, ,	

	Species	Intended use	Type of gene drive (our categories)	Publications (where research		w cl								Project leader (corresponding author on publications)	Funders
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system	is described)		the v			1010	400	•			Institution	
30	Trioza eryteae African citrus psyllid (vector of citrus greening disease)	Reduction in transmission of citrus greening disease, and resulting harm to citrus fruit. This species acts as a vector for <i>Candidatus Liberibacter</i> spp. bacteria which cause the disease.	Propose homing CRISPR	Wheatley and Yang 2021	1	2	3	4	5	6	7	8	9	Y. Yang Pennsylvania State University, USA	USDA Hatch appropriations
	(CABI 2022)	Population modification or suppression proposed	NA – proposal only												
	COLEOPTERA (Bee	etles and weevils)			'										
31	Tribolium castaneum Red flour beetle	Reduction of spoilage of stored grains caused by this species	Homing CRISPR	Drury et al. 2017	1	2	3	4	5	6	7	8	9	M.J. Wade University of Wisconsin, USA	NIH Indiana University start- up funds
	Present on all continents except Antarctica (IRAC 2019)	Population suppression	NA – preliminary theoretical study												
32	Scolytinae subfamily Bark beetles	Reduction of damage to timber crops caused by this species	Homing CRISPR	Liu and Champer 2022 (Note that Li, Aidlin Harari, et al. 2020 also imply these	1	2	3	4	5	6	7	8	9	J. Champer Peking University, China	Peking University SLS-Qidong Innovation Fund
	NA - No single species	Population suppression	NA - preliminary	species could be											

	1	1		1											1
	Species	Intended use	Type of gene drive (our categories)	Publications (where research	How close is strain/system to experimental releases									Project leader (corresponding author on publications)	s) Funders
	Geographic range (of target species)	Intended direct effect (of gene drive)	Developer's name for gene drive system is described) in the wild?										Institution		
33	Listronotus bonariensis Argentine stem weevil	Reduction of damage to pasture grass caused by this species	Not stated – proposal only	Dearden et al. 2018	1	2	3	4	5	6	7	8	9	P. Dearden University of Otago, NZ	Not stated
	Indigenous to South America, it has spread to Australia and New Zealand (EPPO 2022)	Population suppression	NA – proposal only												
34	Sitona lepidus (synonym - S. obsoletus) clover root weevil	Reduction of damage to clover caused by this species (in agricultural contexts)	Not stated – proposal only	Dearden et al. 2018	1	2	3	4	5	6	7	8	9	P. Dearden University of Otago, NZ	Not stated
	(CABI 2022)	Population suppression	NA – proposal only												
35	Anthonomus grandis Mexican cotton boll weevil	Reduction of damage to cotton crops caused by this species	Not stated – proposal only	Goldsmith et al. 2022	1	2	3	4	5	6	7	8	9	C. Goldsmith Texas A&M University, USA	USDA
	Indigenous to Central America, has spread to USA, Caribbean, Brazil and other South American countries (CABI 2022)	Not stated – proposal only	NA – proposal only												

eographic range f target species) YMENOPTERA (sa espula vulgaris ommon wasp alearctic species native Eurasia, invasive in arts of South America, ustralia, New Zealand	Intended direct effect (of gene drive) awflies, bees, wasps Reduction of ecological effects of invasive populations of this species in New Zealand and elsewhere (e.g. Australia) Population suppression	Our categories) Developer's name for gene drive system and ants) Homing CRISPR	i. Dearden et al. 2018 ii. Lester et al. 2023	to e		rime ild?	ntal	ain/s relea				a	(corresponding author on publications) Institution	Funders
espula vulgaris ommon wasp alearctic species native Eurasia, invasive in arts of South America,	Reduction of ecological effects of invasive populations of this species in New Zealand and elsewhere (e.g. Australia)		i. Dearden et al. 2018 ii. Lester et al. 2020	1	2	0								
ommon wasp alearctic species native Eurasia, invasive in arts of South America,	effects of invasive populations of this species in New Zealand and elsewhere (e.g. Australia)	Homing CRISPR	ii. Lester et al. 2020	1	2	2								
Eurasia, invasive in arts of South America,	Population suppression					3	4	5	6	7	8	- -	P. Dearden University of Otago, NZ + P.J. Lester	New Zealand Ministry of Business Innovation and Employment; Victoria University of Wellington
nd Hawaii		NA – preliminary theoretical study											Victoria University of Wellington, NZ	or wearington
espula germanica erman wasp	Reduction of ecological effects of invasive populations of this species in New Zealand and elsewhere (e.g. Australia)	Homing CRISPR	i. Dearden et al. 2018 ii. Lester et al. 2020	1	2	3	4	5	6	7	8	9		
e Villiers, Kriticos, id Veldtman 2017)	Population suppression	NA – preliminary theoretical study												
olenopsis invicta ed imported fire ant	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species	Homing CRISPR	Liu and Champer 2022	1	2	3	4	5	6	7	8			Peking University SLS-Qidong Innovation Fund
ative to South America.	Population suppression	NA – preliminary theoretical study												
ole ed	enopsis invicta imported fire ant ve to South America.	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species The two south America. Propulations inted States, China, tralia, New Zealand some other SE in and Carribean intries. Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Population suppression	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Populations on agriculture, biodiversity and infrastructure caused by this invasive species Population suppression NA – preliminary theoretical study some other SE on and Carribean	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species The two south America. Populations inted States, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species The total states, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Homing CRISPR Liu and Champer 2022 In Appeliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species The total states, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on agriculture, biodiversity and impacts on agriculture, biodiversity and infrastructure caused by this invasive species NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Populations nited States, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Homing CRISPR Liu and Champer 2022 1 2 3 NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species We to South America. Populations nited States, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on Homing CRISPR Liu and Champer 2022 Liu and Champer 2022 NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species The total states, China, tralia, New Zealand some other SE n and Carribean intries Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Homing CRISPR Liu and Champer 2022 1 2 3 4 5 NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Population suppression NA – preliminary theoretical study NA – preliminary theoretical study NA – preliminary theoretical study	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Population suppression NA – preliminary theoretical study NA – preliminary theoretical study NA – preliminary theoretical study	Renopsis invicta imported fire ant Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species Population suppression NA – preliminary theoretical study NA – preliminary theoretical study	Penopsis invicta Imported fire ant Imported fire	Reduction of impacts on agriculture, biodiversity and infrastructure caused by this invasive species NA – preliminary theoretical study NA – preliminary theoretical study NA – preliminary theoretical study NA – preliminary theoretical study

	Species Geographic range (of target species)	Intended use Intended direct effect (of gene drive)	Type of gene drive (our categories) Developer's name for gene drive system	Publications (where research is described)	to	w clo expe the w	rime	ental						Project leader (corresponding author on publications) Institution	Funders
39	Vespa velutina nigrithorax Yellow legged hornet or Asian Hornet	Reduce impacts from predation of commercial honey bees (and potentially wild pollinators)	Homing CRISPR	Meiborg et al, 2023	1	2	3	4	5	6	7	8	9	A. B. Meiborg Roslin Institute, University of Edinburgh, UK	EMBL Wageningen University USDA
		Population suppression	'homing gene drive' targeting a 'haplosufficient female fertility gene' [model other variants, but state this is most likely to be effective]												BBSRC
40	Polistes dominula European paper wasp	Presumably to reduce biodiversity impacts of invasive populations of this species, however the authors do not make this explicit.	Homing CRISPR	Meiborg et al, 2023	1	2	3	4	5	6	7	8	9	A. B. Meiborg Roslin Institute, University of Edinburgh, UK	EMBL Wageningen University USDA
		Population suppression	'homing gene drive' targeting a 'haplosufficient female fertility gene' [model other variants, but state this is the only candidate likely to be effective]												BBSRC
	THYSANOPTERA (Thrips)													
11	Thysanoptera order Thrips	Reduction of damage to crops caused by thrips	Homing CRISPR	Liu and Champer 2022	1	2	3	4	5	6	7	8	9	J. Champer Peking University, China	Peking Universit SLS-Qidong Innovation Fund
	NA - No single species named as a target yet	Population suppression	NA – proposal only												

Abbreviations for funders and other organisations

BBSRC UK Biotechnology and Biological Sciences

Research Council

BARD United States -Israel Binational Agricultural

Research and Development Fund

CDC Centers for Disease Control and Prevention

(Atlanta, US)

COPEG Panama-United States Commission for

the Eradication and Prevention of Screwworm

DAAD German Academic Exchange Service

DARPA US Defense Advanced Research Projects Agency

DFiD UK Department for International Development

FAPESP São Paulo Research Foundation

Gates The Bill and Melinda Gates Foundation

IADB Inter-American Development Bank

IGI UC Berkeley Innovative Genomics Institute,

University of California, Berkeley

INIA Instituto Nacional de Investigación Agropecuaria

NIH US National Institutes of Health

NCSU North Carolina State University

PAF Philanthropy Advisory Fellowship

SDC Swiss Agency for Development and Cooperation

STRI Smithsonian Tropical Research Institute

Sida Swedish International Development

Cooperation Agency

TATA TATA trusts

UC University of California

USDA US Department of Agriculture

Key to technology levels

- 1 Gene drive proposed: a proposal has been put forward in the scientific literature or from another academic source (e.g. funding body)
- Gene drive proposed with supporting theoretical work, or preliminary laboratory work funded: a proposal has been made in the scientific literature supported by theoretical or modelling work, or preliminary laboratory work has been funded but has not yet been published
- Preliminary laboratory work: laboratory research relevant to gene drive construction published (e.g. developing molecular biology methods) with possibility or intention to construct gene drive stated
- 4 Active research on gene drive construction: research on gene drive construction has been funded, but no results yet published OR results published showing non-functional gene drives, or similar very limited progress
- Limited proof of concept: Published results show a gene drive is to some extent functional, however there are outstanding technical issues such as resistance or low efficiency
- 6 Laboratory proof of concept: Taking published results at face value, the system works effectively in small cage trials.
- 7 Large cage trials: Data published on trials in large cages, offering a more accurate simulation of conditions in natural environment.
- Potential further contained trials: After large cage trials, it is not currently clear what further trials may take place prior to experimental releases. One possibility is trials in outdoor cages.
- 9 Experimental releases in natural environment: Field trials are underway with releases in the natural environment. This does not indicate that the technology has been shown to be effective or safe.
- X Abandoned project: Research to construct a gene drive has been carried out, but has been unsuccessful and to our knowledge is no longer active

References

- Adolfi, A., V. M. Gantz, N. Jasinskiene, H. F. Lee, K. Hwang, G. Terradas, E. A. Bulger, A. Ramaiah, J. B. Bennett, J. J. Emerson, J. M. Marshall, E. Bier, and A. A. James. 2020. "Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi." *Nat Commun* 11 (1):5553. doi: 10.1038/s41467-020-19426-0.
- Anderson, M. E., J. Mavica, L. Shackleford, I. Flis, S. Fochler, S. Basu, and L. Alphey. 2019. "CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say." *PLoS One* 14 (11):e0224857. doi: 10.1371/journal.pone.0224857.
- Anderson, Michelle A. E., Jessica Purcell, Sebald A. N. Verkuijl, Victoria C. Norman, Philip T. Leftwich, Tim Harvey-Samuel, and Luke S. Alphey. 2020. "Expanding the CRISPR Toolbox in Culicine Mosquitoes: In Vitro Validation of Pol III Promoters." Acs Synthetic Biology 9 (3):678-681. doi: 10.1021/acssynbio.9b00436.
- Anderson, M. A. E., E. Gonzalez, J. X. D. Ang, L. Shackleford, K. Nevard, S. A. N. Verkuijl, M. P. Edgington, T. Harvey-Samuel, and L. Alphey. 2023. "Closing the gap to effective gene drive in Aedes aegypti by exploiting germline regulatory elements." *Nat Comm* 14 (1):338. doi: 10.1038/s41467-023-36029-7.
- Asad, M., D. Liu, J. W. Li, J. Chen, and G. Yang. 2022. "Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostella." Front Physiol 13:14. doi: 10.3389/fphys.2022.938621.
- Bernardini, F., A. Kriezis, R. Galizi, T. Nolan, and A. Crisanti. 2019. "Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis." *Sci Rep* 9 (1):5158. doi: 10.1038/s41598-019-41646-8.
- Berni, M., D. Bressan, Y. Simão, A. Julio, P. L. Oliveira, A. Pane, and H. Araujo. 2020. "Pigmentation loci as markers for genome editing in the Chagas disease vector Rhodnius prolixus." bioRxiv:2020.04.29.067934. doi: 10.1101/2020.04.29.067934.
- Bier, E. 2022. "Gene drives gaining speed." Nat Rev Genet 23 (1):5-22. doi: 10.1038/s41576-021-00386-0.
- Buchman, A., S. Gamez, M. Li, I. Antoshechkin, H. H. Li, H. W. Wang, C. H. Chen, M. J. Klein, J. B. Duchemin, P. N. Paradkar, and O. S. Akbari. 2019. "Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs." *Proc Natl Acad Sci U S A* 116 (9):3656-3661. doi: 10.1073/pnas.1810771116.
- Buchman, A., J. M. Marshall, D. Ostrovski, T. Yang, and O. S. Akbari. 2018. "Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii." *Proc Natl Acad Sci U S A* 115 (18):4725-4730. doi: 10.1073/pnas.1713139115.
- Buchman, Anna, Stephanie Gamez, Ming Li, Igor Antoshechkin, Hsing-Han Li, Hsin-Wei Wang, Chun-Hong Chen, Melissa J. Klein, Jean-Bernard Duchemin, James E. Crowe, Jr., Prasad N. Paradkar, and Omar S. Akbari. 2020. "Broad dengue neutralization in mosquitoes expressing an engineered antibody." *Plos Pathogens* 16 (1). doi: 10.1371/journal.ppat.1008103.r001; 10.1371/journal.ppat.1008103.r002; 10.1371/journal.ppat.1008103.r004.
- CABI. 2022. "CABI, 2022, Invasive Species Compendium, Wallingford, UK; CAB International.." www.cabi.org/isc.
- Carballar-Lejarazú, R., C. Ogaugwu, T. Tushar, A. Kelsey, T. B. Pham, J. Murphy, H. Schmidt, Y. Lee, G. C. Lanzaro, and A. A. James. 2020. "Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae." *Proc Natl Acad Sci U S A* 117 (37):22805-22814. doi: 10.1073/pnas.2010214117.
- Carballar-Lejarazú, R., T. Tushar, T. B. Pham, and A. A. James. 2022. "Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae." *Genetics.* doi: 10.1093/genetics/iyac055.
- Carballar-Lejarazú, R., Y. Dong, T. B. Pham, T. Tushar, R. M. Corder, A. Mondal, C. Hm Sánchez, H. F. Lee, J. M. Marshall, G. Dimopoulos, and A. A. James. 2023. "Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii." *Proc Natl Acad Sci U S A* 120 (29):e2221118120. doi: 10.1073/pnas.2221118120.
- Chae, K., J. M. Overcash, C. Dawson, C. Valentin, H. Tsujimoto, K. M. Myles, and Z. N. Adelman. 2023. "CRISPR-based gene editing of non-homologous end joining factors biases DNA repair pathway choice toward single-strand annealing in Aedes aegypti." *Curr Res Biotechnol* 5. doi: 10.1016/j.crbiot.2023.100133.
- Chen, Shuai, Fangyu Ding, Mengmeng Hao, and Dong Jiang. 2020. "Mapping the Potential Global Distribution of Red Imported Fire Ant (Solenopsis invicta Buren) Based on a Machine Learning Method." Sustainability 12 (23):10182.
- Chen, W., F. Yang, X. Xu, U. Kumar, W. He, and M. You. 2019. "Genetic control of Plutella xylostella in omics era." *Arch Insect Biochem Physiol* 102 (3):e21621. doi: 10.1002/arch.21621.
- DARPA. 2017. "Building the Safe Genes Toolkit." accessed 08/04/2019. https://www.darpa.mil/news-events/2017-07-19.
- Davis, Rebecca J., Esther J. Belikoff, Allison N. Dickey, Elizabeth H. Scholl, Joshua B. Benoit, and Maxwell J. Scott. 2021. "Genome and transcriptome sequencing of the green bottle fly, Lucilia sericata, reveals underlying factors of sheep flystrike and maggot debridement therapy." *Genomics* 113 (6):3978-3988. doi: https://doi.org/10.1016/j. ygeno.2021.10.003.
- de Villiers, M., D. J. Kriticos, and R. Veldtman. 2017. "Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius) improves model fit to predict potential for further spread." *PLoS One* 12 (7):e0181397. doi: 10.1371/journal.pone.0181397.
- Dearden, P., N. Gemmell, O. R. Mercier, P. Lester, M. J. Scott, R. Newcomb, T. Buckley, J. Jacobs, S. Goldson, and D. R. Penman. 2018. "The potential for the use of gene drives for pest control in New Zealand: a perspective." *J R Soc N Z* 48 (4):225-244. doi: 10.1080/03036758.2017.1385030.

- Drury, D. W., A. L. Dapper, D. J. Siniard, G. E. Zentner, and M. J. Wade. 2017. "CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations." *Sci Adv* 3 (5):e1601910. doi: 10.1126/sciadv.1601910.
- Ellis, D. A., G. Avraam, A. Hoermann, C. A. S. Wyer, Y. X. Ong, G. K. Christophides, and N. Windbichler. 2022. "Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae." *PLoS Genet* 18 (6):e1010244. doi: 10.1371/journal.pgen.1010244.
- EPPO 2022. EPPO Global Database is maintained by the Secretariat of the European and Mediterranean Plant Protection Organization (EPPO). https://gd.eppo.int/
- Facchinelli, Luca, Ace R. North, C. Matilda Collins, Miriam Menichelli, Tania Persampieri, Alessandro Bucci, Roberta Spaccapelo, Andrea Crisanti, and Mark Q. Benedict. 2019. "Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector." *Parasit Vectors* 12 (1):70. doi: 10.1186/s13071-019-3289-y.
- FAO/IAEA. 2017. "Updated Mediterranean Fruit Fly Global Distribution Map." accessed 12/04/2019. http://www-naweb.iaea.org/nafa/news/2013-medfly-global-map.html.
- Feng, X., V. López Del Amo, E. Mameli, M. Lee, A. L. Bishop, N. Perrimon, and V. M. Gantz. 2021. "Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes." *Nat Commun* 12 (1):2960. doi: 10.1038/s41467-021-23239-0.
- Galizi, R., L. A. Doyle, M. Menichelli, F. Bernardini, A. Deredec, A. Burt, B. L. Stoddard, N. Windbichler, and A. Crisanti. 2014. "A synthetic sex ratio distortion system for the control of the human malaria mosquito." *Nat Commun* 5:3977. doi: 10.1038/ncomms4977.
- Galizi, R., A. Hammond, K. Kyrou, C. Taxiarchi, F. Bernardini, S. M. O'Loughlin, P. A. Papathanos, T. Nolan, N. Windbichler, and A. Crisanti. 2016. "A CRISPR-Cas9 sex-ratio distortion system for genetic control." *Sci Rep* 6:31139. doi: 10.1038/srep31139.
- Gantz, V. M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias, E. Bier, and A. A. James. 2015. "Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi." *Proc Natl Acad Sci U S A* 112 (49):E6736-43. doi: 10.1073/pnas.1521077112.
- Garrood, W. T., N. Kranjc, K. Petri, D. Y. Kim, J. A. Guo, A. M. Hammond, I. Morianou, V. Pattanayak, J. K. Joung, A. Crisanti, and A. Simoni. 2021. "Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito." *Proc Natl Acad Sci U S A* 118 (22). doi: 10.1073/pnas.2004838117.
- Goldsmith, C. L., K. E. Kang, E. Heitman, Z. N. Adelman, L. W. Buchman, D. Kerns, X. Liu, R. F. Medina, and A. Vedlitz. 2022. "Stakeholder Views on Engagement, Trust, Performance, and Risk Considerations About Use of Gene Drive Technology in Agricultural Pest Management." *Health Secur* 20 (1):6-15. doi: 10.1089/hs.2021.0101.
- Grafton-Cardwell, E., K. E Godfrey, M. E. Rogers, C. C. Childers, and P. A. Stansly. 2005. "Asian Citrus Psyllid." accessed 12/04/2019. http://www.cdfa.ca.gov/plant/acp/docs/factsheets/PsyllidbrochureAug05.pdf.
- Hammond, A., X. Karlsson, I. Morianou, K. Kyrou, A. Beaghton, M. Gribble, N. Kranjc, R. Galizi, A. Burt, A. Crisanti, and T. Nolan. 2021. "Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance." *PLoS Genet* 17 (1):e1009321. doi: 10.1371/journal.pgen.1009321.
- Hammond, A. M., K. Kyrou, M. Bruttini, A. North, R. Galizi, X. Karlsson, N. Kranjc, F. M. Carpi, R. D'Aurizio, A. Crisanti, and T. Nolan. 2017. "The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito." *PLoS Genet* 13 (10):e1007039. doi: 10.1371/journal.pgen.1007039.
- Hammond, A., P. Pollegioni, T. Persampieri, A. North, R. Minuz, A. Trusso, A. Bucci, K. Kyrou, I. Morianou, A. Simoni, T. Nolan, R. Müller, and A. Crisanti. 2021. "Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field." *Nat Commun* 12 (1):4589. doi: 10.1038/s41467-021-24790-6.
- Hammond, Andrew, Roberto Galizi, Kyros Kyrou, Alekos Simoni, Carla Siniscalchi, Dimitris Katsanos, Matthew Gribble, Dean Baker, Eric Marois, Steven Russell, Austin Burt, Nikolai Windbichler, Andrea Crisanti, and Tony Nolan. 2015. "A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae." *Nat Biotechnol* 34:78. doi: 10.1038/nbt.3439.
- Harvey-Samuel, T., V. C. Norman, R. Carter, E. Lovett, and L. Alphey. 2019. "Identification and characterization of a Masculinizer homologue in the diamondback moth, Plutella xylostella." *Insect Mol Biol.* doi: 10.1111/imb.12628.
- Harvey-Samuel, T., X. Feng, E. M. Okamoto, D. K. Purusothaman, P. T. Leftwich, L. Alphey, and V. M. Gantz. 2023. "CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus." bioRxiv doi: 10.1101/2023.06.12.544656.ects14070620.
- Henderson, C., K. Kemirembe, S. McKeand, C. Bergey, and J. L. Rasgon. 2022. "Novel genome sequences and evolutionary dynamics of the North American anopheline species Anopheles freeborni, Anopheles crucians, Anopheles quadrimaculatus, and Anopheles albimanus." *G3 (Bethesda)* 7. doi: 10.1093/g3journal/jkac284.
- Heu, C. C., R. J. Gross, K. P. Le, D. M. LeRoy, B. Fan, J. J. Hull, C. S. Brent, and J. A. Fabrick. 2022. "CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug." *Sci Rep* 12 (1):4917. doi: 10.1038/s41598-022-08908-4.
- Hoermann, A., S. Tapanelli, P. Capriotti, G. Del Corsano, E. K. Masters, T. Habtewold, G. K. Christophides, and N. Windbichler. 2021. "Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement." *Elife* 10. doi: 10.7554/eLife.58791.
- Hoermann, A., T. Habtewold, P. Selvaraj, G. Del Corsano, P. Capriotti, M. G. Inghilterra, T. M. Kebede, G. K. Christophides, and N. Windbichler. 2022. "Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development." *Sci Adv* 8 (38):eabo1733. doi: 10.1126/sciadv.abo1733.

- Jia, Z., S. Hasi, D. Zhan, B. Hou, C. Vogl, and P. A. Burger. 2023. "Genome and Transcriptome Analyses Facilitate Genetic Control of Wohlfahrtia magnifica, a Myiasis-Causing Flesh Fly." *Insects* 14 (7). doi: 10.3390/ins
- KaramiNejadRanjbar, Mohammad, Kolja N. Eckermann, Hassan M. M. Ahmed, Héctor M. Sánchez C., Stefan Dippel, John M. Marshall, and Ernst A. Wimmer. 2018. "Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management." *Proc Natl Acad Sci U S A* 115 (24):6189-6194. doi: 10.1073/pnas.1713825115.
- Koidou, V., S. Denecke, P. Ioannidis, I. Vlatakis, I. Livadaras, and J. Vontas. 2020. "Efficient genome editing in the olive fruit fly, Bactrocera oleae." *Insect Mol Biol.* doi: 10.1111/imb.12640.
- Kokotovich, A. E., S. K. Barnhill-Dilling, J. E. Elsensohn, R. Li, J. A. Delborne, and H. Burrack. 2022. "Stakeholder engagement to inform the risk assessment and governance of gene drive technology to manage spotted-wing drosophila." *J Environ Manage* 307:114480. doi: 10.1016/j.jenvman.2022.114480.
- Kraemer, M. U., M. E. Sinka, K. A. Duda, A. Q. Mylne, F. M. Shearer, C. M. Barker, C. G. Moore, R. G. Carvalho, G. E. Coelho, W. Van Bortel, G. Hendrickx, F. Schaffner, I. R. Elyazar, H. J. Teng, O. J. Brady, J. P. Messina, D. M. Pigott, T. W. Scott, D. L. Smith, G. R. Wint, N. Golding, and S. I. Hay. 2015. "The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus." *Elife* 4:e08347. doi: 10.7554/eLife.08347.
- Kriticos, Darren J., Ross E. Darnell, Tania Yonow, Noboru Ota, Robert W. Sutherst, Hazel R. Parry, Habibu Mugerwa, M. N. Maruthi, Susan E. Seal, John Colvin, Sarina Macfadyen, Andrew Kalyebi, Andrew Hulthen, and Paul J. De Barro. 2020. "Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases." *Sci Rep* 10 (1):22049. doi: 10.1038/s41598-020-79149-6.
- Kyrou, K., A. M. Hammond, R. Galizi, N. Kranjc, A. Burt, A. K. Beaghton, T. Nolan, and A. Crisanti. 2018. "A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes." Nat Biotechnol 36 (11):1062-1066. doi: 10.1038/nbt.4245.
- Lester, P. J., M. Bulgarella, J. W. Baty, P. K. Dearden, J. Guhlin, and J. M. Kean. 2020. "The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps." *Sci Rep* 10 (1):12398. doi: 10.1038/s41598-020-69259-6.
- Lester, P. J., D. O'Sullivan, and G. L. W. Perry. 2023. "Gene drives for invasive wasp control: Extinction is unlikely, with suppression dependent on dispersal and growth rates." *Ecol Appl* 33 (7):e2912. doi: 10.1002/eap.2912.
- Li, J., O. Aidlin Harari, A. L. Doss, L. L. Walling, P. W. Atkinson, S. Morin, and B. E. Tabashnik. 2020. "Can CRISPR gene drive work in pest and beneficial haplodiploid species?" *Evol Appl* 13 (9):2392-2403. doi: 10.1111/eva.13032.
- Li, M., T. Li, N. Liu, R. R. Raban, X. Wang, and O. S. Akbari. 2020. "Methods for the generation of heritable germline mutations in the disease vector Culex quinquefasciatus using clustered regularly interspaced short palindrome repeats-associated protein 9." *Insect Mol Biol* 29 (2):214-220. doi: 10.1111/imb.12626.
- Li, M., T. Yang, N. P. Kandul, M. Bui, S. Gamez, R. Raban, J. Bennett, H. M. C. Sanchez, G. C. Lanzaro, H. Schmidt, Y. L. Lee, J. M. Marshall, and O. S. Akbari. 2020. "Development of a confinable gene drive system in the human disease vector Aedes aegypti." *Elife* 9. doi: 10.7554/eLife.51701.
- Liu, Y., and J. Champer. 2022. "Modelling homing suppression gene drive in haplodiploid organisms." *Proc Biol Sci* 289 (1972):20220320. doi: 10.1098/rspb.2022.0320.
- Mahmood, Muhammad Arslan, Rubab Zahra Naqvi, Hamid Anees Siddiqui, Imran Amin, and Shahid Mansoor. 2022. "Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control." *J Pest Sci* doi: 10.1007/s10340-022-01520-5.
- MAP. 2019. "The Malaria Atlas Project." accessed 11/02/2019. https://map.ox.ac.uk/mosquito-malaria-vectors/.
- Meccariello, Angela, Flavia Krsticevic, Rita Colonna, Giuseppe Del Corsano, Barbara Fasulo, Philippos Aris Papathanos, and Nikolai Windbichler. 2021. "Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata." BMC Biology 19 (1):78. doi: 10.1186/s12915-021-01010-7.
- Meiborg, A. B., N. R. Faber, B. A. Taylor, B. A. Harpur, and G. Gorjanc. 2023. "The suppressive potential of a gene drive in populations of invasive social wasps is currently limited." *Sci Rep* 13 (1):1640. doi: 10.1038/s41598-023-28867-8.
- Ni, X. Y., W. J. Lu, X. Qiao, and J. Huang. 2021. "Genome editing efficiency of four Drosophila suzukii endogenous U6 promoters." Insect Mol Biol 30 (4):420-426. doi: 10.1111/imb.12707.
- Novas, R., T. Basika, M. E. Williamson, P. Fresia, A. Menchaca, and M. J. Scott. 2023. "Identification and functional analysis of Cochliomyia hominivorax U6 gene promoters." *Insect Mol Biol* doi: 10.1111/imb.12875.
- Ogola, E. O., J. O. Odero, J. M. Mwangangi, D. K. Masiga, and D. P. Tchouassi. 2019. "Population genetics of Anopheles funestus, the African malaria vector, Kenya." *Parasit Vectors* 12 (1):15. doi: 10.1186/s13071-018-3252-3.
- Paulo, D. F., M. E. Williamson, A. P. Arp, F. Li, A. Sagel, S. R. Skoda, J. Sanchez-Gallego, M. Vasquez, G. Quintero, A. A. Pérez de León, E. J. Belikoff, A. M. L. Azeredo-Espin, W. O. McMillan, C. Concha, and M. J. Scott. 2019. "Specific Gene Disruption in the Major Livestock Pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9." G3 (Bethesda) 9 (9):3045-3055. doi: 10.1534/q3.119.400544.
- Peng, Lu, Qing Wang, Ming-Min Zou, Yu-Dong Qin, Liette Vasseur, Li-Na Chu, Yi-Long Zhai, Shi-Jie Dong, Li-Li Liu, Wei-Yi He, Guang Yang, and Min-Sheng You. 2020. "CRISPR/Cas9-Mediated Vitellogenin Receptor Knockout Leads to Functional Deficiency in the Reproductive Development of Plutella xylostella." Front Physiol 10. doi: 10.3389/fphys.2019.01585.
- Pescod, P., G. Bevivino, A. Anthousi, R. Shelton, J. Shepherd, F. Lombardo, and T. Nolan. 2023. "Measuring the Impact of Genetic Heterogeneity and Chromosomal Inversions on the Efficacy of CRISPR-Cas9 Gene Drives in Different Strains of Anopheles gambiae." Crispr J 6 (5):419-429. doi: 10.1089/crispr.2023.0029.

- Pham, T. B., C. H. Phong, J. B. Bennett, K. Hwang, N. Jasinskiene, K. Parker, D. Stillinger, J. M. Marshall, R. Carballar-Lejarazu, and A. A. James. 2019. "Experimental population modification of the malaria vector mosquito, Anopheles stephensi." PLoS Genet 15 (12):e1008440. doi: 10.1371/journal.pgen.1008440.
- Pollegioni, P., T. Persampieri, R. L. Minuz, A. Bucci, A. Trusso, S. D. Martino, C. Leo, M. Bruttini, M. Ciolfi, A. M. Waldvogel, F. Tripet, A. Simoni, A. Crisanti, and R. Müller. 2023. "Introgression of a synthetic sex ratio distortion transgene into different genetic backgrounds of Anopheles coluzzii." *Insect Mol Biol* 32 (1):56-68. doi: 10.1111/imb.12813.
- Polo, N., M. Lopes-da-Silva, R Sivori, and S. Dos Santos. 2016. *Potential spread and economic impact of invasive Drosophila suzukii in Brazil*. Vol. 51.
- Quinn, C., A. Anthousi, C. Wondji, and T. Nolan. 2021. "CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus." *G3 (Bethesda)* 11 (8). doi: 10.1093/g3journal/jkab201.
- Reid, W., A. E. Williams, I. Sanchez-Vargas, J. Lin, R. Juncu, K. E. Olson, and A. W. E. Franz. 2022. "Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single generation crosses and modeling." *G3* (Bethesda) 12(12):jkac280 doi: 10.1093/g3journal/jkac280.
- Samy, A. M., A. H. Elaagip, M. A. Kenawy, C. F. Ayres, A. T. Peterson, and D. E. Soliman. 2016. "Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis." *PLoS One* 11 (10):e0163863. doi: 10.1371/journal.pone.0163863.
- Scott, M. J., J. B. Benoit, R. J. Davis, S. T. Bailey, V. Varga, E. O. Martinson, P. V. Hickner, Z. Syed, G. A. Cardoso, T. T. Torres, M. T. Weirauch, E. H. Scholl, A. M. Phillippy, A. Sagel, M. Vasquez, G. Quintero, and S. R. Skoda. 2020. "Genomic analyses of a livestock pest, the New World screwworm, find potential targets for genetic control programs." Commun Biol 3 (1):424. doi: 10.1038/s42003-020-01152-4.
- Simoni, A., A. M. Hammond, A. K. Beaghton, R. Galizi, C. Taxiarchi, K. Kyrou, D. Meacci, M. Gribble, G. Morselli, A. Burt, T. Nolan, and A. Crisanti. 2020. "A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae."

 Nat Biotechnol 38 (9):1054-1060. doi: 10.1038/s41587-020-0508-1.
- Sosa-Estani, S., and E. Leonor Segura. 2015. Integrated control of Chagas disease for its elimination as public health problem A Review. Vol. 110.
- Taxiarchi, C., A. Beaghton, N. I. Don, K. Kyrou, M. Gribble, D. Shittu, S. P. Collins, C. L. Beisel, R. Galizi, and A. Crisanti. 2021. "A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression." Nat Commun 12 (1):3977. doi: 10.1038/s41467-021-24214-5.
- Terradas, G., A. Hermann, A. A. James, W. McGinnis, and E. Bier. 2022. "High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes." *G3 (Bethesda)* 12 (1). doi: 10.1093/g3journal/jkab369.
- Verkuijl, S. A. N., E. Gonzalez, M. Li, J. X. D. Ang, N. P. Kandul, M. A. E. Anderson, O. S. Akbari, M. B. Bonsall, and L. Alphey. 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias." *Nat Comm* 13 (1):10. doi: 10.1038/s41467-022-34739-y.
- Wellcome. 2017. "A platform for the transgenic modification of sand flies (Lutzomyia longipalpis) and triatomine bugs (Rhodnius prolixus) towards deriving insect vectors refractory to disease agents mediated by CRISPR-Cas9 gene drive." https://wellcome.org/grant-funding/people-and-projects/grants-awarded/a-platform-transgenic-modification-sand-flies.
- Wheatley, M. S., and Y. Yang. 2021. "Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management." *Phytopathology*:Phyto08200322ia. doi: 10.1094/phyto-08-20-0322-ia.
- Wolf, S., J. Collatz, J. Enkerli, F. Widmer, and J. Romeis. 2023. "Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species." *Risk Anal* 43 (10):1921-1932. doi: 10.1111/risa.14096.
- Xu, X., T. Harvey-Samuel, H. A. Siddiqui, J. X. Ang, M. E. Anderson, C. M. Reitmayer, E. Lovett, P. T. Leftwich, M. You, and L. Alphey. 2022. "Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostella." *Crispr J* 5 (2):224-236. doi: 10.1089/crispr.2021.0129.
- Yadav, A. K., C. Butler, A. Yamamoto, A. A. Patil, A. L. Lloyd, and M. J. Scott. 2023. "CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukii." *Proc Natl Acad Sci U S A* 120 (25):e2301525120. doi: 10.1073/pnas.2301525120.
- Zalucki, Myron P., Asad Shabbir, Rehan Silva, David Adamson, Liu Shu-Sheng, and Michael J. Furlong. 2012. "Estimating the Economic Cost of One of the World's Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long Is a Piece of String?" *J Econ Entomoly* 105 (4):1115-1129. doi: 10.1603/ec12107.
- Zhao, S., Z. Xing, Z. Liu, Y. Liu, X. Liu, Z. Chen, J. Li, and R. Yan. 2019. "Efficient somatic and germline genome engineering of Bactrocera dorsalis by the CRISPR/Cas9 system." *Pest Manag Sci* 75 (7):1921-1932. doi: 10.1002/ps.5305.
- Zhao, Y. J., B. B. Jin, P. W. Liu, X. L. Xiao, L. J. Cai, Z. S. Xie, L. Kong, T. Liu, W. Q. Yang, Y. Wu, J. B. Gu, Z. J. Tu, A. A. James, and X. G. Chen. 2022. "The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males." *Plos Genet* 18 (6):15. doi: 10.1371/journal.pgen.1010280.

Literature searches

Literature searches from January 2022 through to 30 September 2023 were carried out using the Web of Science database and the search term 'gene drive'. Literature searches for 2021 and previous years were carried out with the PubMed database using the same search term. Relevant journal articles were identified by systematically screening titles and abstracts from the search outputs. Press releases from academic institutions and other relevant materials on the web were identified using appropriate web searches (e.g. searching for the names of group leaders, target species, and the term 'gene drive'). We recognise that all relevant material on the web may not have been identified.

Research on the related field of 'sex ratio distorters' is also included and identified from the literature using similar methodology.

Criteria for inclusion

Laboratory research in insect species as reported in the academic literature and other sources, such as press releases from funders and universities, have been included. Modelling studies have been included for species where laboratory work on gene drive construction has not yet begun, so modelling studies in *Anopheles gambiae* for example are not included. Proposals for gene drives in insect targets as identified from the natural sciences literature are included. Proposals deriving from other academic literature (such as literature relating to policy or ethics) are included at our discretion, for example if such proposals designate novel targets.

Basis for constructing the data table

Broadly, each entry in the table describes development of a particular gene drive concept in a specific target species or group, as described in the relevant literature. Entries are grouped taxonomically, and then ordered by how far the research has progressed.